博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Codeforces Round #258 (Div. 2) 容斥+Lucas
阅读量:5261 次
发布时间:2019-06-14

本文共 2631 字,大约阅读时间需要 8 分钟。

题目链接:

E. Devu and Flowers

time limit per test4 secondsmemory limit per test256 megabytes

问题描述

Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

输入

The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

输出

Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

样例输入

3 5

1 3 2

样例输出

3

题意

给你n个花瓶,每个花瓶上装有f[i]朵颜色相同的玫瑰。现在你要从中取s朵,问有多少种取法。

题解

首先,如果每个花瓶里面的花都有无限朵的话,那么这就是简单的隔板问题(c[s+n-1][n-1]),那么我们可以通过容斥把问题都转换成无限制的问题。 首先我们考虑第i个超过了限制,那么相当于对剩下的sum=s-f[i]-1,做一遍无限制的隔板,这样我们对n个花瓶容斥一遍,就能求出答案。

代码

#include#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;#define X first#define Y second#define mkp make_pair#define lson (o<<1)#define rson ((o<<1)|1)#define mid (l+(r-l)/2)#define sz() size()#define pb(v) push_back(v)#define all(o) (o).begin(),(o).end()#define clr(a,v) memset(a,v,sizeof(a))#define bug(a) cout<<#a<<" = "<
<
VI;typedef pair
PII;typedef vector
> VPII;const int INF=0x3f3f3f3f;const LL INFL=0x3f3f3f3f3f3f3f3fLL;const double eps=1e-8;const double PI = acos(-1.0);//start----------------------------------------------------------------------const int mod=1e9+7;LL n;LL s,f[22];void gcd(LL a,LL b,LL& d,LL& x,LL& y){ if(!b){ d=a; x=1; y=0; } else{ gcd(b,a%b,d,y,x); y-=x*(a/b); }}LL Inv(LL a,LL n){ LL d,x,y; gcd(a,n,d,x,y); return d==1?(x+n)%n:-1;}LL get_C(LL n,LL m){ LL a=1,b=1; for(int i=1;i<=m;i++){ b=b*i%mod; a=a*(n-i+1)%mod; } return a*Inv(b,mod)%mod;}LL Lucas(LL n,LL m){ if(m==0) return 1; return get_C(n%mod,m%mod)*Lucas(n/mod,m/mod)%mod;}int main() { scf("%I64d%I64d",&n,&s); for(int i=0;i
=0){ if(cnt&1){ ans-=Lucas(sum+n-1,n-1); }else{ ans+=Lucas(sum+n-1,n-1); } ans=(ans%mod+mod)%mod; } } prf("%I64d\n",ans); return 0;}/*5 31 2 93 4 53 5 3*/

转载于:https://www.cnblogs.com/fenice/p/5951019.html

你可能感兴趣的文章
如何设置映射网络驱动器的具体步骤和方法
查看>>
ASP.NET WebApi 基于OAuth2.0实现Token签名认证
查看>>
283. Move Zeroes把零放在最后面
查看>>
Visual Studio Code 打开.py代码报Linter pylint is not installed解决办法
查看>>
Python 数据类型
查看>>
S5PV210根文件系统的制作(一)
查看>>
centos下同时启动多个tomcat
查看>>
slab分配器
查看>>
数据清洗
查看>>
【读书笔记】C#高级编程 第三章 对象和类型
查看>>
针对sl的ICSharpCode.SharpZipLib,只保留zip,gzip的流压缩、解压缩功能
查看>>
【转】代码中特殊的注释技术——TODO、FIXME和XXX的用处
查看>>
【SVM】libsvm-python
查看>>
Jmeter接口压力测试,Java.net.BindException: Address already in use: connect
查看>>
Leetcode Balanced Binary Tree
查看>>
Leetcode 92. Reverse Linked List II
查看>>
九.python面向对象(双下方法内置方法)
查看>>
go:channel(未完)
查看>>
[JS]递归对象或数组
查看>>
LeetCode(17) - Letter Combinations of a Phone Number
查看>>